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Abstract We introduce a model of branching Brownian motions in time-space random en-
vironment associated with the Poisson random measure. We prove that, if the randomness
of the environment is moderated by that of the Brownian motion, the population density
satisfies a central limit theorem and the growth rate of the population size is the same as its
expectation with strictly positive probability. We also characterize the diffusive behavior of
our model in terms of the decay rate of the replica overlap. On the other hand, we show that,
if the randomness of the environment is strong enough, the growth rate of the population size
is strictly less than its expectation almost surely. To do this, we use a connection between
our model and the model of Brownian directed polymers in random environment introduced
by Comets and Yoshida.

Keywords Branching Brownian motion - Random environment - Poisson random
measure - Central limit theorem - Phase transition - Brownian directed polymer

1 Introduction

We consider a branching Brownian motion in time-space random environment. In particular,
we are concerned with the fluctuations in the population density and the population growth
rate. In this paper, we reveal their properties under the condition that the randomness of
the environment is moderated by that of the Brownian motion. We also show the existence
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of the phase transition in terms of the population growth rate in connection with Brownian
directed polymers in random environment introduced in [9].

Smith and Wilkinson [20] introduced a model of branching processes in random envi-
ronment as a generalization of the classical Galton-Watson process (see also [1]). There the
offspring distributions are assumed to be independent and identically distributed random
variables indexed by generation. The continuous time counterpart is then introduced by Ka-
plan [14]. These two models are generalized to branching processes with spatial motions in
time-space random environment (for instance, see [4, 17, 23]). In particular, Birkner, Geiger
and Kersting [4] studied the long time behavior of the population size for a branching ran-
dom walk in random environment. Furthermore, Yoshida [23] proved a central limit theorem
for the population density in terms of convergence in probability by using the square inte-
grability of an associated martingale. Recently, Nakashima [15] refined this result to be in
terms of almost sure convergence.

In this paper, we introduce a new continuous time-space model and show the counterparts
of the results which are proved by Yoshida [23]. More precisely, we cope with a branching
Brownian motion in time-space random environment associated with the Poisson random
measure; the places occupied by Poisson points are suitable for particles to live, and the
branching rate of each particle is proportional to the number of Poisson points which influ-
ence the particle. Our interest lies in the asymptotic behavior of the model in the situation
that the randomness of the Brownian motion moderates that of the environment. In such
situation, we show that the population density satisfies a central limit theorem and that the
growth rate of the population size is the same as its expectation with strictly positive prob-
ability (Theorem 2.1 and Corollary 2.3). We also characterize the diffusive behavior of our
model in terms of the decay rate of the replica overlap (Proposition 2.4).

The martingale theory works well for studying asymptotic properties of branching
Markov processes (for instance, see [1, 6, 18, 22]) and branching Markov processes in
random environment (for instance, see [4, 23]) because the total population size becomes
a martingale under the normalization with respect to its expectation. This theory is also
applied to our model for the characterization of the correlation among particles. Such cor-
relation exists because Brownian particles may be influenced by common Poisson points,
and thus the magnitude of the correlation is proportional to the degree to which pairs of
particles meet together. We can characterize this magnitude in quantity (see condition (i)
in Theorem 2.1 below) by the expected value of the square of an associated martingale M,
which we define by (2.3) below. From this, we find that the square integrability of M, is
equivalent to say that the correlation among particles is so weak that the situation is similar
to the non-random environment case.

As we discuss in Sect. 4 below, our model is closely related to the model of Brownian
directed polymers in random environment introduced by Comets and Yoshida [9]. In fact,
if we fix an environment, then the expected population size coincides with the so-called
partition function of the latter model as we see in (5.1) below. Furthermore, this relation
implies that, if the randomness of the environment is strong enough, the growth rate of the
population size is strictly less than its expectation almost surely (Corollary 5.3). Namely,
our model has the phase transition in terms of the population growth rate.

2 Model and Results
2.1 Model

A branching process we consider in this paper is defined by the Brownian motion on R and
the Poisson random measure on R, x R? for R, = [0, 0o). Following [24], we first give
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some notations for them and then construct branching Brownian motions in time-space ran-
dom environment. We remark that Savits [17] also constructed branching Markov processes
in time-space random environment by applying the results by Ikeda, Nagasawa and Watan-
abe [11-13], but our construction is more direct and self-contained.

Let 1 denote the Poisson random measure on R, x R¢ with unit intensity on a proba-
bility space (M, G, Q). Namely, n is a non-negative integer valued random measure such
that, n(Ay), ..., n(A,) are mutually independent for disjoint and bounded sets Ay, ..., A, €
B[R, x R?) and

A k
Q(n(A) = k) :,M.% for A € B(R, x R,

where B(R, x RY) is the family of all Borel measurable sets on R, x R¢ and | - | is the
Lebesgue measure on R!*4. Let {6,},~0 be the time shift operator of the Poisson random
measure, that is, 6,7 = 6,n(ds, dx) = n({t} + ds, dx) identically for any s, # > 0. The nota-
tion 6,7 is often abbreviated to 1,. We denote by {G;},>¢ the family of the sub-o-field of G
defined by

G, =0 (n(AN (0, 1] x R))), A € B[R, x RY).

Let M = (2, F, {Ft}10, {Br}1>0, { Pr}cera» {6:}:>0) be the Brownian motion on R4,
where {6,},>¢ is the time shift operator of paths, that is, for each path w € @, B,(6,w) =
B, ;s (w) identically for any s, t > 0. Note that we use the same notation {6,},>¢ as the time
shift operators of paths and of the Poisson random measure, respectively. Denote by V; the
tube around the graph {(s, By)}o<s<; defined by

Vi=Vi(w) ={(s,x) e R}y x R? |s€(,1], x e U(Bs(w))} forw e,

where U (x) is a closed ball in R? centered at x € R? with unit volume.

Let t be a non-negative random variable on (2, F, P,), independently of the Brownian
motion, of exponential distribution with the mean 1; P,(t > a) = e~ for any a > 0. Fix a
parameter o > 0 and set

S=S(w,n) =inf{t > 0| an(V,(w)) > t(w)} for (w,n) € 2 x M.

Then
Po(SCom) > 1) = EJe ™).

Here we note that, if we fix a path w € 2, {n(V;(w))},>0 is a standard Poisson process on the
half line. In particular, the jump size of this process is equal to one Q-a.s. (for instance, see
[16, p. 472, Proposition 1.4]). Let {p,};2,, be a probability function, that is, p, > 0 for any
n>0and ) .2 p, = 1. In the sequel, we assume py + p; < | to avoid the case where the
numbers of particles do not increase for branching Brownian motions which are introduced
below. We define

o0
m'@ = Zn‘fpn for g > 0.
n=0

We also let I be an N U {0}-valued random variable on (2, F, P,), independently of the
Brownian motion and 7, associated with {p,}°2 so that P,( =n) = p,.
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‘We now introduce the index sets. Define
K'={0), K'={(D)}, K'={0ko,....k)|koy....kn €N} forn=>2

o0
and K=ZK".
n=0

In addition, it is useful to set

o0
KO={(0,1), K =K"' forn=1 and K=Y K.
n=0

If k= (1,ks,....k,) € K" for some n > 1 and k € N, then we define k- k = (1, k, ...,
k,, k) € K". By the same way, we define (0) - 1= (0, 1) € KO.

Let {Btk},zo and 7¥, k € K, be independent copies of {B;}/>0 and 7, respectively. Denote
by VX the tube V, associated with the Brownian motion {BX},~o, and by S¥ the random
variable S with t and V; replaced by ¥ and Vtk, respectively. In addition, we set 1@ =1
and let I¥, k e K\ K, be independent copies of I, respectively.

We consider the family of random variables T* and {Bi‘} >0 indexed by k € K on the mea-
surable space (2 x M, F ® G) as follows; for each fixed (o, ) € Q x M,1let TO(w, n) =0
and B;O) (w,n) = B,(O) (w) identically for any 7 > 0. We then define inductively for k - k € K,

TR = % (g9, ) = {Tk(wv M) + S Orx . @, Orx (), ik < 1¥(w),

00, ifk>I*%w) +1,
and
K K-k Kk
BTk(a),r]) ((,(), 77) + Bt ((,()) - BTk(a),r/) ((,()),
Bf =B (w,n) =1 for T*w,n) <t < T*(w,n) if k < I*(w),
A, otherwise,
where A is a cemetery point, 7" := 7" and B{" := B{"". We use the notations B¥ and

T¥ to denote, respectively, the position and the splitting time of the particle with index k
of a branching Brownian motion. More precisely, we can describe our branching Brownian
motion as follows:

e At time 0, the Brownian particle with index 1 starts from B

e The Brownian particle with index k € K\ K° splits into n Brownian particles with prob-
ability p, at site B';k at time T,

e These Brownian particles, indexed by k- 1,k -2, ...,k - n, respectively, start from B';k
independently.

The definition of the splitting time says that each Brownian particle is apt to split if the
associated ball with unit volume catches many Poisson points.

Let us introduce the notion of branching Brownian motions in random environment. We
define the probability measures {P?} . gs and {Py},cge on (2 x M, F ® G), respectively, by

BI=r®s, ad = ok,
M
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where 4, is the Dirac measure at n € M. We call (2 x M, F ® G, {{Bi‘},zo}keK, {T*}kek,
{P7},cre) the branching Brownian motion in environment n with offspring distribution
{Pn}2y, and (2 x M, F ® G, {{Bf},zo}kd{, {T*)kek, {P},cpe) the branching Brownian
motion in random environment with offspring distribution {p, }72 .

We denote by N,(A) the number of particles on the set A € B(R?) at time ¢, that is,

N:(A) = Z l{Tk§t<Tk"<,B¥""eA}'
k-keK

We can then regard N, (-) as a configuration measure of particles at time 7. We denote by N,
the total number of particles at time ¢, that is, N, = N, (R¢). We also use the notation

N(F) =Y FBE) N, ik grigay  for f € By(RY),

k-keK

where B, (R?) stands for the set of all bounded Borel measurable functions on R¢.
2.2 Results

In this subsection, we state the results in this paper. These results are the continuous model
versions of those obtained by Yoshida [23] for branching random walks in random environ-
ment. In the sequel, we denote by P, P", P, etc. the quantities P, P!, P, etc. for x =0,
respectively.

For two independent Brownian motions ({B,'};=0, {P}}yere) and ({B?};20, {P}ierd)
onRY, we let P, , = P! ® P? and abbreviate P, , to P,. We then have

({3;2 - Btl}tEO» Py) = ({Ba}i=0, P), 2.1

i .
where = means that the both hand sides have the same law.
We now assume that m‘ is finite. Let us define

B=log{mV —e*m® —1)} and r=2r(B):=¢f —1. (2.2)

Set
M,=e*N, fort>0. (2.3)

Since M_, is a non-negative P-martingale by Lemma 3.2 below, there exists a limit
lim;_, oo M; =: M o, P-a.s. Define

AL _ 1 _ﬁ
M;(dx) =e " N;(dx) and p(x)= —(27T)d/2 exp< > )

Let C,(RY) stand for the set of all bounded and continuous functions on R?. We then obtain

Theorem 2.1 Assume
d=>3, mP>1 and m® < co.

Then the following conditions are equivalent to each other:
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(i) Elexp(* [;°|U(B)YNU(BH)|d1)] < oo;
(i) limy_ o M, = Mo, in L*(P);
(iii) 1Moo fpa f (/DM (dxX) = Mo [pa f(X)p(x)dx in L*(P) for any f € C,(RY).

Remark 2.2 The expected value in condition (i) expresses the degree to which pairs of
Brownian particles meet together, or are effected by common Poisson points. In other words,
this value measures the magnitude of the correlation among particles. In particular, condi-
tion (i) says that the randomness of the Brownian motion moderates that of the environment.
Here we would like to add a remark that the equality

(o] 2 o]
E[exp(#/ |UBHNUB? dt>] = E[exp(%/ |U©)NU (B, dt)]
0 0

holds by (2.1). Therefore, from [5, Theorem 5.1] and [21, Theorem 2.4], condition (i) is
equivalent to say

1
inf{—/ [Vu(x)|>dx
2 ]Rd

where C5°(R?) denotes the totality of smooth continuous functions with compact support
in R?. Moreover, [9, Proposition 4.2.1] yields that condition (i) holds if

Be (O, 10g<l + ﬁ)),
2}’(1

where ry = B((d +2)/2)"/¢/ /7 is the radius of U (0) and y; is the smallest positive zero
of the Bessel function J4_4)/» defined by

2

u € CF(RY, %/ u(x)2|U(0)mU(x)|dx:1} >1,
Rd

oo

AN (—r*/4*
Ly)y=\= — i >0 and —1.
) <2> ;k!y(v—i—k—l—l) ory >0andv >

In contrast with d > 3, when d = 1 or 2, the Brownian motion is recurrent and a pair of
particles is apt to meet together as we can see from (2.1). Hence the correlation among
particles is so strong that condition (i) does not hold.

Condition (ii) implies P(M, > 0) > 0, that is, the growth rate of the population size
is the same as its expectation with strictly positive probability. Such situation is similar to
the non-random environment case. In fact, for a branching Brownian motion in non-random
environment with no extinction, the limit of an associated martingale is strictly positive
almost surely (see [1, p. 112, Theorem 2]).

Let p,(dx) be the population density at time ¢ defined by

We then get

Corollary 2.3 (Central limit theorem) Assume

d>3, m® >1 and m® < co.
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Central Limit Theorem for Branching Brownian Motions in Random 151

If one of the conditions in Theorem 2.1 holds, then

lim f f<i>pt(dx): / F@)pG)dx  inP(-|Ma > 0)-probability
t—00 R‘l ﬁ R‘l

forany f € Cp(RY).

Corollary 2.3 says that the population density p;(dx) converges to the standard normal
distribution under the Brownian scale. We note that S. Watanabe proved an almost sure
central limit theorem for branching Brownian motions in non-random environment with no

extinction (see [1, p. 245]).
Related to the population density p,(dx), we let

7= sup p(UG) and R,= f pr(U ()2 dx. (2.4)
xeRd R4

We can then regard p, as the density at the most populated ball with unit volume and R,
as the replica overlap by analogy with the spin glass theory. By the same way as that in
[9, Theorem 2.3.2], there exists a constant ¢ = c(d) € (0, 1) such that cﬁtz < R, <p, for any
t > 0. Furthermore, we can characterize the diffusive behavior of our model in terms of the
decay rate of the replica overlap:

Proposition 2.4 Assume
d=>3, mP>1 and m® <co.
If one of the conditions in Theorem 2.1 holds, then

R, =0 %) inP(-| My > 0)-probability.

3 Moments

To prove the results in the previous section, we calculate the moments of N;. In the sequel,
we assume that mD is finite. We then have

Lemma 3.1 Foranys,t>0and f € B,(RY),

ElNs () F @G 1= Z Lipke ity Egrr [eﬁ"'(VA')f(BS)] Q-a.s. (3.1
k-keK

In particular,

E'[N,(f)1= E.[e""™ f(B)] Q-a.s. (3.2)

Proof We prove this lemma only for f =1 and p, = 1 because the proof is done for the
general case by a modification of the notation. We fix ¢t > 0 and assume n(V;) = n(V;_)
because this equality holds Q-a.s. Let u = e* — 1. We first show

PIT* <1) = P(T*(,n) <1)

Vi_
= —/,Lnil E, |:/ <TI( ))l{nflﬁn(\/sf)} deim](v“)] forn>1andk e K"
0,1] n— 1
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by induction, where by de=*"("") we mean the Stieltjes integral associated with ¢=*7""), This
equality holds for n = 1 by definition. Assume that the equality holds for some n > 2. Then
fork -k € K" we have

PIT** <1)
=PI(T* <t, T"+ S 00 < 1)

n— —a n(Vs—) —a
=1 lEx |:f de n(%)( )l{n—lgn(vg,))EBx |:/ de ns(Vu)j|i| (3.3)
0.1] n—1 (0,1—s]

by the Markov property. Since we know
de™1) = —pe™" M dy (V) = —(1 = e™*)e™ "M dn(V,) (3.4)

and n;(V, 0 0;) = n(V,+s) — n(V;), the last term of (3.3) above is equal to

" n(Vs-) o
pwHE, |:/ dn(Vy) < )1(;1—15;7(\4_)]/ e~V dTl(Vu)]
©.1] n—1 5.1

0 —a n(Vs-)
=u"E, U dn(V,)e ”‘V“)/ ( : )1{,1_15,7(%7)} dn(Vs)]
0.1] Ou) \ 1 — 1

by Fubini’s theorem. Noting that
(Vu—)—1
n(Ve-) ' k (V)
1, < dn(Vy) = 1 - — 1 -
/«),u) ( 01 ) le-t=nmsy dn(Ve) k:nzl 0 — 1) m=nio) " (n<n(Vu))

holds for any u > 0 such that n(V,) # n(V,—), we complete the induction. Hence we get

(o) oo
E'NI=Y) Y PIT*<t<T*)=3" 3 ({PUT* <) —P"(T*" <1)
n=0 k.keK" n=0 k.keK"
=1-E, [/ de "V (1 + 2M)"<Vx—>].
(0.1]
Then (3.4) implies
n(Vi)
1 _/ de—an(Vs)(l + ZM)')(VF) =14+(1—-e 2(2 _ e—a)k—l =Q2- efa)”(v’),

©.1] k=1

which leads to (3.2).
We finally show (3.1). For any A € F; ® G,, we obtain

EZ[NtJrs; A] = Z I[DZ(Tk <t+4+s< Tk-k; A)
k-keK

Define fork € K",

= [k k), ifn = Tand 1<l <n,
"0, ifn=0and=0.
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Then by the Markov property, we have

PI(T* <t+s < T*, A)

=Y PUTM <t < TN 0 T* <t 45 < TH A)
=0

= _Ez |:EBk'k |:/ de*a’h(vu)]; Tk <t< Tk-k! A]
" Lo
n—1
- n—Il— n (V —)
_ ZEZ EBkl-km / de—@m (Vi) w -1 tVu Lot (Vi)
1=0 ! 0.5] n—1[01—1

V-
_ Mn—l <77f( l)>1{n—]5;7,(\/u,)}>:|; Tk[ <t< Tkl‘kHl , A]
n—

n—1
=: (Dxx — Z(H)kl'km foranyn>1landk-k e K".
1=0

This implies

E![Nyss: A —(I)1+Z > ((I)kk Z(HM)

n=1 k.keK"
oo n—1
—Z D M=y > Y 2
n=0 k.keK" n=11=0 y r ekl
[o] (o] o0
=303 M=) Y Y 2 (e
n=0 k.kcK" 1=0 y regl n=I+1

By the same calculation as that in the proof of (3.2), the last term above is equal to

D BN Eger [P V] TH <1 < T, 4],
k-keK

whence (3.1) follows. O
By the definition of the Poisson random measure, we obtain
Q[ef"™] =€ for A € BR, x RY), 3.5)

which implies the following:
Lemma 3.2 Foranys,t>0and f € B,(RY),

ENis (N F @Gl =€ Y Ligicy i Eges £ (BY)].

k-keK
In particular, M, is a martingale on (2 x M, F ® G, {F ® G }i=0, P,) and
E.[N:(f)] =" E.[f(B)].
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Proof By the same reason as that in the proof of Lemma 3.1, we prove this lemma only
for f = 1. Since U(x) has a unit volume, it follows from Fubini’s theorem, Lemma 3.1
and (3.5) that

E, [ﬁr+s | F ® gt] = Z 1{Tksr<Tk'k]Q[EB}(-k [elsﬂt(Vs)]]
k-keK

- Z I{TkST<Tk‘k]EB}('k[Q[eﬂn’(Vs)]] — NN,
k-keK

for any s, ¢ > 0, which completes the proof. ]

In the sequel, we further assume that m® is finite. Let us define

o0
c=m(2)—m(1)=2n(n—1)pn and g=e*u=1—e".

n=0

‘We then have
Lemma 3.3 For any f, g € B,(RY),
EIN,(f)N, ()] = E.[e""" f(B)g(B,)]

+ ciiE, |:/ eﬁn(Vs—)EBs [e‘ﬁm(v’”)f(B;ﬂ)]
(0.1]

x Eg [’V g(B,_,)] dn(Vs)] Q-a.s. (3.6)

Proof We show this lemma for f =1, g =1 and p, = 1 by the same reason as that in
Lemma 3.1. We fix # > 0 and assume 1(V;) = n(V,_). A direct calculation then implies

—
N, = Z Lk oriky + Z l[Tk§[<Tk-k}l{T|;§l<T|;_,;}
k-keK k-k k-keK,
k-k#k-k
=N+ Z LirkcrariiyLgu, pieiy + Z Lipea oyl i, gk
Kk kkeK, k-k k-keK,
ksk k#£k
=: N, + () + (I).
Since

=2 Z l(TkSt<Tk«])l{TkS[<Tk»2},
keK\ K0
it follows that

ENMI=2) Y PT*C,m) <t < T¥'(om), THC ) <1 < T2, )

n=1 keK"
oo
o wet (1(Vs2)
= —ZZ Z E, |:/ de=enVs) l<n ) )1{”715”(\4,)}1)&?(1‘ -5 <S8, Us))2:|
n=1 keK" 0.1 N
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n(Vs—)+1 (V )
=-2E, / de™ 1Y) N 2u) ‘(" >E [ememVi-o]?
0,1] n—1

n=1
=-2F, |:/ deia”(v“)(l + ZM)W(V.P)EBX [efans(vzf.v)]z]
(0,1]

by the Markov property and the independence of S*! and S%2.
We have

m= > Y iyl g, _pir, = (1) + (A1)

k. keK\(KOUK!), k,ke{1,2}

k#k
for
o] o]
m.m=1n=1pe(1 2)" be(1,2)", 2€K" k ke(1,2)
b1#b)
and

) —222 DD DI I o ——

m=1 n=1be{1,2}" acK" f fe(1,2},
k#by

By the same calculation as that for E?[(I)], it follows that

EZ[(H/ i i Z Z Z ]PZ(TaJJ <t< Ta-b<k’Ta<l~)§t < Ta‘ﬁ‘];)

m.i=1n=1pe(] 2ym be(1,2)" a€K"  ke(1,2}
by#by

o0
= -2 Z E, |:/ de*"”l(vs)(] +2M)n(Vs7)
0,1]

m,m=1

—ans met {Ms(Vu—)
X EBA; |:/ de 1s (Vi) (2 . (2,1,(,) 1 ( * )1{,,,,15,7(\/“7)}
(©,1—s] m—1
m(Ms(Vus)
- Q2w ( " >1<msn<vm})]

—an, et (s (Vo)
X EBS I:/(\O ]de ns (Vi) (2 (2 ) 1( :n _l | )1{,;1_15,7(\/“7)}
L, t—s

(V)
— (2w (n P >1(M§U(W¢)})]:|

Eg[(n”)]=2ii Z oY PITt <t < T, T*b <t < 7abk)
m=1 n=1 be(l,2}

"maekK" k ke(1,2),
k#by

and

o]
— 42 E, |:/ de™ V) (1 4 2M)0(Vs—)EBX [e*arl.c(Vt—s)]
0.1]

m=1
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\y VM*
x EBS |:/ defoﬂ]s(‘/u) <2 . (2/,4,)"’71 (77 ( ))l(m_lfn(vu_)}
0,1—s] m—1

s(Vi—
- w" (77. (m ))1(m<n<vu_)1)ﬂ-

Combining the calculations above with (3.2) and (3.4), we obtain (3.6). O

Lemma 3.4 For any f, g € By(RY),

E, [N (f)N:(g)]
= EMEx [f(B)g(B)]
+ ciie™ E, [ / e M Ep, [exp<)\2 / ) UBHN U(B,f)|du> f(B,‘,S)g(Bf,x)] ds}.
0 0
(3.7
In particular,
— t ] 2(t—s)
E,[N,]=e" + ciie™ / e—“E[exp (AZ/ \U(B)YnU(B?)| du)] ds
0 0
t Az 2(t—s)
=M +cﬁ,e2“/ e‘“E[exp(?/ |[U0)N U(Bu)ldu)} ds. (3.8)
0 0

Proof We prove this lemma in a similar way to [9, Proposition 4.2.1(a)]. If V// denotes the
tube V; with respect to {Bf }i>0 for each i = 1, 2, then we obtain

E, [eﬁn(vr)f(B,)]EX [eﬂn(Vr)g(Bt)] =E, [eﬁ(n(V,l)+'7(V,2))f(Btl)g(BIZ)].

Define V'AV2 = (V' \ V2) N (V2 \ V. Since n(V,! N V?) and n(V,'!AV?) are mutually
independent and A(8)% = A(28) — 2A(B) by definition, we have

Q[P VIH1IN] = Qlexp2Bn(V,' N V) + Bu(V, AV
=exp(A2B) |V NV + 1BV, AV?])
= exp(A(B)|V,' N V2 ])e? P!

from (3.5). Here we note
t
vinv?| :/ |U(B))NU(B?)|ds.

0

Set
t
Uy, :/ [UBHYNUB?)|du and U, =U,, forO<s<t<oo.
s
We then get
E, [N (f)N:(g)]

— oM + c;lez’\’Ex |:Q|:/ e’n“eﬁ"(v“’)EBS [EAZUHf(B,l,s)g(B,z,X)] dﬂ(Vs)H
0,1]
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by the independence of the masses for disjoint sets of the Poisson random measure. Here we
recall that, if a path w € Q is fixed, {n(V,(w))};>0 is a standard Poisson process on the half
line. Since ¢#7s-) is predictable, the second term above is equal to

t
c[wz“Ex |:Q|:/ gfz“eﬂ”(v‘*)EBJ [GAZUHf(B,],S)g(B,Z,X)] dsﬂ
0

t
— cﬂezm E, |:/ e—k.v EB; [e)LZUffs f(Bll—.Y)g(Btz—s)] ds]
0

(see [16, p. 472]), whence we have (3.7). Noting that (2.1) implies
t t
/ [UBHNUB?|ds = / |U©)NU(B?— Bl)|ds
0 0

t 2t
g/ IU(O)ﬂU(BzS)IdS=%/ [U0)NU(Bs)|ds,
0 0

we obtain (3.8). O

4 Proofs of Theorem 2.1 and Proposition 2.4
To establish Theorem 2.1, we prove

Lemma 4.1 Assume that P(Uy, < 00) = 1. Then

B} B?
lim E, | f(U, — gl —
s (%)
o0
= E[f(/ [U0) N U (Ba)l dsn / gp(y) dy/ gy)p(y)dy
0 R4 R4

forany f,g,g e Cp(RY).
Proof We prove this lemma by the same way as that in the proof of [7, Theorem 4.2]. By a
standard approximation procedure, we may assume f € C;,(RY) and g, g € C), ,(R?), where

Cy..(R?) stands for the set of all bounded and uniformly continuous functions on R?. Then
a direct calculation implies

e G)(5)]

B! — B! B? — B?
= rws( P ) ()]
1

B' —B

s () (P ]
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158 Y. Shiozawa

B!\ _( B?
+ Ex [f(Ut)g(E>g<$)a U:,t > 0]
=0 —-d) + D)+ (AV) forany0<s <t.

Since the two Brownian motions {Btl }i>0 and {3,2}720 are mutually independent with inde-
pendent increments, we have

= E[f(U;)]E[g(B’IJ;B; )]E [g’ (33;;33)]

— E[f(/o [U©0)N U(B2u)|du>:| /Rdg(y)p(y) dy /Rdé(y)p(y) dy

as t — oo and then s — o0.
By assumption, we get
[AD] = | fllecllgloollglloo P (Uss > 0) < || flloollglloo 1€ loo P (Us,00 > 0) —> 0 as s — oo.

By the same way, lim,_, o (Iim,_, .o (IV)) = 0 follows. Since g and g belong to C; , (RY), we
obtain lim,_, o, (IIl) = 0. These complete the proof. D

Proof of Theorem 2.1 We first prove the implication (i) < (ii). From (3.8), we have

— ) — c Az [
sup]E[M,]:hmE[Mt]:mE exp ?fo [UWO)NU(By)|ds ) |,

>0 t—00

which shows the implication (i) < (ii).
We next prove the implication (ii) = (iii). Set

X
L(f)= /Rd f(ﬁ)Mz(dx)
Then by (3.7), we get

2 t 1 2
E[L:(f)’]= e’“E[f(%) ] + c/lE[/o e " Eg, [e“”’*~‘f(%)f<li’[‘t“ )} dsi|‘

By Lemma 4.1 applied to the second term of the right hand side of the equality above, we
have

2 00
lim E[L?] = m(lf lE[exp(%/ |U(O)ﬂU(BS)|ds>]</ f(x)p(x)dx>
—00 — 0 R4

2

2
—2
=E[Moc](/d f(x),o(x)dx) , @.1)
R
which shows the implication (ii) = (iii). The implication (iii) = (ii) follows by taking f =1
in (4.1). O

Proof of Proposition 2.4 Since

1
Rr=r2f M, (U (x))*dx,
M, R4
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it is enough to show

E[/ M,(U(x))zdx:| = 0. 4.2)
]Rd

It follows from (3.7) that
IE[ / M,(U(x))zdx] _ / EIM, (U (1)) dx
R4 R4
= e*“/ P(B, € U(x))dx
R4

+ cle[ f t ds e™™ f Es, [V B, B> eUW)] dx].
0 R
(4.3)
By the equality
Ep[e*’V~; Bl B, e U(x)]=Ep [V ;x - B eUO)NUMB-, — B,
we obtain
/R Es, [V B, B}, € U(x)]dx = /R Es, [’V x € UO)NU(BZ, — B\_))]dx.

In addition, the last term above is equal to

/ Ep "V, B2 — Bl e U(x)]dx
U(0)

t—s

A2 29
= / E|:exp<— / |[U©)NU(B,)| du); By—s) € U(x):| dx
I70) 2 Jo

by (2.1). Furthermore, by [8, Lemma 3.1.4], the last term above is not greater than

C / (/ ) C
—_— dy Jdx=———- foranyt>s>0
=9 Juoy \Juw (t — )72

with some positive constant C; > 0. Therefore, the right hand side of (4.3) is not greater
than

Cicii t/2 t )\‘2 o]
e 4 ‘102“/ e ds—i—cﬁ(/ e s ds)E[exp(—/ |U(O)OU(BX)|ds):|,
4z Jy 12 2 Jo

which leads to (4.2). O

Remark 4.2 (Extinction) Let ({Y;},>0, P) be a continuous time branching process with i =
1 —e™ and {p,};2, as branching rate and as offspring distribution, respectively. We then
have the inequality

P(lim Y, = o) < IP’(lim N, = 0). (4.4)

—00 —>o0

@ Springer



160 Y. Shiozawa

We prove this inequality by the same way as that for the discrete time-space case (see
[4, Theorem 4]). It is known by [1, p. 108, Theorem 1] that the extinction probability
P(lim,_, » Y; = 0) is the smallest root of the equation

o0
u:E pat, 0<u<l.
n=0

On the other hand, we get

PN =0 = B[ [ ae S p N =o'
0.1] ‘

n=0

Then, by letting ¢ go infinity and then applying the monotone convergence theorem for this
equality, we have

imN.—=0) =7 —an (V) P T P
P =0) <E[ [ ae 03 (¥, =0)']

n=0

Since n(Vy) and P’Zﬁ; (@) (Ms =0) are independent for each w € €2, the right hand side above
is not less than

i —an(Vs) Gs[mons (1500 T " L= "
ME[ /(O’OO) de=1) 3" p, 0% [P (lim N, =0)] ] =" paP(lim N, =0)

n=0 n=0

by Schwarz’s inequality, where Q9% is the conditional expectation given G,. Namely, we get

]P’(lim N, = o) > ipn[?(tlilgoﬁt - o)",

t—00
n=0

whence (4.4) holds by the charac_terization of P(lim,_, o, ¥Y; = 0) as we mentioned above.
In particular, we have P(lim,_, o, N, = 0) = 1 for m"’ < 1 because P(lim,_,o, ¥; =0) =1
holds.

5 Connection with Brownian Directed Polymers in Random Environment

In this section, we confirm a connection between the model of branching Brownian motions
in random environment and the model of Brownian directed polymers in random environ-
ment introduced by Comets and Yoshida [9]. Let u} be a probability measure on (2, F),
the so-called polymer measure, defined by

Bn(Vi)
zZy

W (do) = S~ Pu(dw), neM.

Here B € R is a parameter and
Z,x — Ex[eﬂﬂ(Vz)]’

which is called the partition function. The size of (V) is considered as the total number
of impurities governed by 7 in the tube V;, and thus the polymer measure is nothing but the
law of the Brownian motion in environment 7.
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Let
W,=eZ,

for A = A(B) = e — 1 as we defined in (2.2). Then W, is called the normalized partition func-
tion because Q[W;] = 1 holds. In addition, since the process {n(V;(w))},;>o has independent
Poisson increments for each w € 2, W, is a mean-one, right continuous and left limited,
positive martingale on (M, G, {G;};>0, Q). In particular, the limit Wy, :=lim,_, ., W, exists
Q-a.s. Since /7YY > 0 holds for all ¢ > 0, the event {W,, = 0} is measurable with respect
to the tail o -field

ﬂff(?ﬂ[r,oo)de)-
t>1

Furthermore, Kolmogorov’s 0-1 law implies Q(W,, > 0) =1 or Q(W, = 0) = 1. The
situation Q(W,, > 0) = 1 is called the weak disorder and another situation Q(W,, =0) =1
the strong disorder.

Since (3.2) yields

E"[N,(A)] = E[""""; B, A] and E"[N,]=2, (5.1)
for any n € M, we obtain
E"[M,(A)] =e ™ E[f""); B, € A] and E'[M,]=W, (5.2)

and thus
E'[N,(A)] _ E'[M,(A)]
E'[N,]  EM,]

Theorem 2.1 then leads to the central limit theorem which is weaker than that proved in
[8, Theorem 2.1.1].

(B € A) =

Corollary 5.1 Assume d >3 and B > 0. If one of the conditions in Theorem 2.1 holds, then
. B, . -
lim w, |:f<—>:| =/ f(x)p(x)dx in Q-probability
t—00 \/; ]Rd
forany f € Cp(RY).

Comets and Yoshida [9, Theorem 2.1.1] showed the existence of the phase transition for
Brownian directed polymers in random environment in terms of the weak disorder and the
strong disorder, or the growth rate of the partition function. Using the relation (5.2), we can
derive the existence of the phase transition also for branching Brownian motions in random
environment in terms of the population growth rate. To do this, we prove

Proposition 5.2
(i) The inequality
E[M] < QW]

holds. In particular, Q(Wy, = 0) = 1 implies P(M.,=0)=1.
(ii) The converse of the inequality above does not hold for d > 3.
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Proof (i) It follows from Fatou’s lemma that
E[M.] = o[ lim B'[M,]] = o[ tim W,] = Q[ W.].
—00 —00

(ii) Assume d > 3 and m" < 1. Then it follows that P(im,;0 N; = 0) = 1 as we
mentioned in Remark 4.2, and thus P(M, = 0) = 1. However, since 8 = log{1l + (1 —
e~ ) (m — 1)} is negative, we have Q(Wy, > 0) = 1 by [9, Theorem 2.1.1(c)]. O

If d =1 or 2, then the correlation among particles is strong as we mentioned in Re-
mark 2.2. Even if d > 3, the situation is the same as the low dimensional case when the
parameter f is large enough. In fact, it follows from Bertin [2, 3] and Comets and Yoshida
[9, Theorems 2.1.1 and 2.2.2] that

Corollary 5.3 Ford =1 or 2, P(Ms = 0) = 1 holds for any B > 0. On the other hand,
for d > 3, there exists a positive constant By(d) > 0 such that P(M , = 0) = 1 holds for

any B € (Bo(d), 00). Moreover, for any dimension d, there exists a non-negative constant
B1(d) = 0 such that for any g € (B1(d), 00),

log M,

lim sup
t—00

<—c(B) P-as.

holds with a non-random constant c(8) > 0. In particular, ;(1) = B1(2) =0and B,(d) > 0
ifd > 3.

Corollary 5.3 says that, if the randomness of the environment is strong enough, the
growth rate of the population size is strictly less than its expectation almost surely. This
result contrasts with the non-random environment case and the weak random environment
case as we discussed before.

Remark 5.4 Tt is recently proved in [19] that, if P(M, = 0) = 1, there exist non-random
positive constants ¢y, ¢; > 0 such that

t
—cy logM, < / R,ds < —c¢, logﬁ, for any t > T P-a.s.
0

holds with some random positive constant 7. Combining this with Corollary 5.3, we have
forany g > B(d),

limsupp, > limsup R, > c'(B) P-as.
1—>00 t—00
with some non-random positive constant ¢’(8) € (0, 1). Namely, if the randomness of the
environment dominates that of the Brownian motion, particles gather together at small sets
in contrast with the diffusive behavior as we proved in Corollary 2.1 above. This result is an
extension of that obtained by Hu and Yoshida [10] for branching random walks in random
environment.
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